The Use of Biological Method for Plant Disease Control

DG / National Research Agronomic Institute of Tunisia (INRAT)
University of Carthage, Tunis, Tunisia

Workshop on Safe Biological Control (IAPC)

(Addis Ababa, Ethiopia, 27-29 November, 2017)
[Copyright©]

<u>Introduction</u>

Disease Biological Control Definition

Broad Sense: Use of any organism to control a pathogen, including the resistance of the host plant itself as a natural and effective form of biological control.

Common Sense: biological control limited to antagonistic organisms (generally microorganisms) used to reduce attacks of crops by pathogens.

<u>Introduction</u>

* Antagonistic effects:

- direct or indirect, and
- due to introduced organisms or manipulation of existing organisms.
- * Definition also extended to any natural products extracted from living organisms or from other sources such as soil.

(1) Hypovirulence

Introduced antagonists may hypovirulent (or sometimes avirulent) strains of the same pathogen → they spread and cover the host plants \rightarrow reduction of the infection by virulent strains.

Hypovirulence

Ex: Case of chestnut blight (*Cryphonectria parasitica*) in Europe: introduced hypovirulent strains → reduce infection by virulent strains.

Hypovirulence

How: Hypovirulent strains carry in their cytoplasm virus-like double-stranded RNA → limit the pathogenicity of the virulent strains.

Double-stranded RNAs pass through mycelial anastomoses from hypovirulent to virulent strains \rightarrow the latter become hypovirulent \rightarrow the disease development decreases or stops.

6

(2) Competition

On plant surfaces:

- Host-supplied nutrients: exudates, leachates and senesced tissue, +
- Nutrients from waste products of other organisms such as insects (e.g. aphid honeydew)

Competition

Competition between pathogens and non-pathogens: Non-pathogens may develop and spread on host plant surface \rightarrow covering the plant surface prevents pathogen establishment \rightarrow limiting disease incidence and severity.

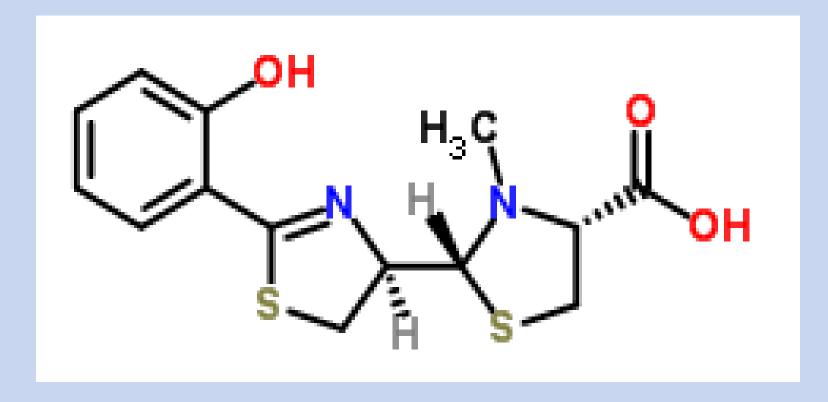
Competition

For soilborne pathogens: pathogenic plant-associated microorganisms → protect plants by rapid colonization non-pathogenic exhausting the limited available substrates \rightarrow no place for pathogens to start infection.

(3) Siderophores

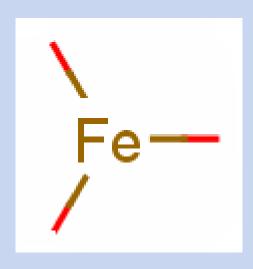
- Low molecular weight compounds in bacteria with high affinity to <u>iron</u>.
- They search and mop up all available iron in the immediate environment.
- Numerous pathogens need iron \rightarrow essential mineral nutrient for growth and sometimes even for virulence.

Siderophores


- Some fluorescent pseudomonads can control pathogens through production of siderophores (Ex: Pyoverdin, pyochelin) that sequester all available iron,
- Pathogens cannot develop and live with unavailable iron \rightarrow they die.

Siderophores

Ex: Pyoverdin


Siderophores

Ex: Pyochelin

Siderophores

- In the rhizosphere of highly oxidized

and aerated soil \rightarrow <u>iron</u> is present in <u>ferric</u> form (Fe³⁺), insoluble in water, available at low pH, exists at very low concentration.

Siderophores

Ex: With siderophore, Pseudomonas fluorescens uptakes whole limited available iron \rightarrow inhibits germination of chlamydospores of Fusarium oxysporum.

Ferric iron

Disease Biological Control Siderophores

Ex: The same situation: Pseudomonas

 $aeruginosa \rightarrow Pythium.$

Ferric iron

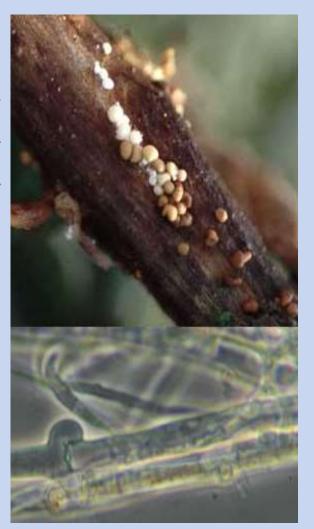
(4) Lytic enzymes

* Many microorganisms release lytic enzymes \rightarrow can hydrolyze a wide variety of polymeric compounds, including chitin, proteins, cellulose, hemicellulose, and $\overline{DNA} \rightarrow \text{can result}$ in the suppression of plant pathogen activities.

Lytic enzymes

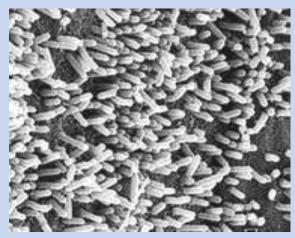
Ex: Biocontrol of *Pythium ultimum* in the rhizosphere of sugar beet by *Stenotrophomonas maltophilia*: due to the production of extracellular protease.

Lytic enzymes



Lytic enzymes

Ex: Serratia marcescens with chitinase production \rightarrow can control the pathogen Sclerotium rolfsii.

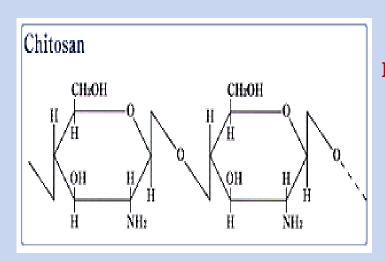


Lytic enzymes

Disease Biological Control Lytic enzymes

Ex: Lysobacter and Myxobacteria produce lytic enzymes \rightarrow suppressing fungal plant pathogens.

Lysobacter colonizing tomato root

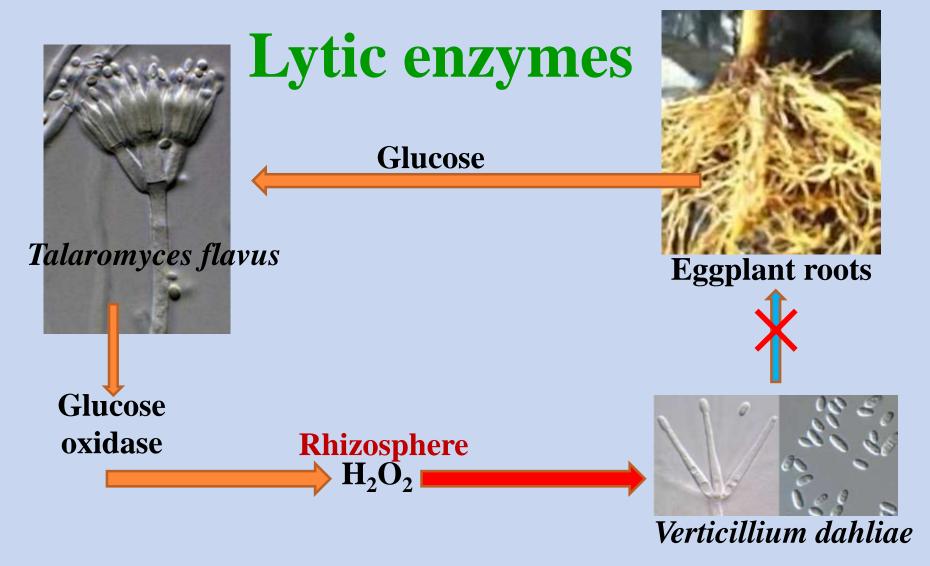


Myxobacteria

Lytic enzymes

Ex: Addition of chitosan can stimulate microbial chitosanase \rightarrow acting against *Fusarium*

oxysporum f. sp. radicis-lycopersici



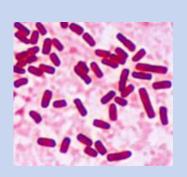
microbial chitosanase

Disease Biological Control Lytic enzymes

Ex: Production of hydrogen peroxide in the rhizosphere, catalyzed by glucose oxidase from *Talaromyces flavus* \rightarrow responsible for the biocontrol of eggplant wilt caused by *Verticillium dahliae*.

Glucose oxidase reduces the growth of V. dahliae only in the presence of eggplant roots \rightarrow supply of glucose from the roots was of major importance.

(5) Other microbial products

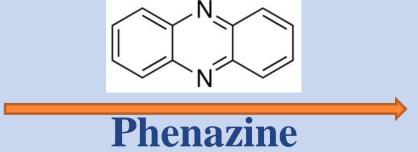

* <u>Hydrogen cyanide</u> (HCN) blocks cytochrome oxidase pathway and is highly toxic to all aerobic microorganisms: Pseudomonas fluorescens produces HCN \rightarrow suppression of black rot of tobacco caused by *Thielaviopsis basicola*.

HCN

Other microbial products

Ammonia (NH₃) produced by Enterobacter cloacae \rightarrow involved in the suppression of Pythium ultimum causal agent of the damping-off of cotton.

 NH_3


(6) Antibiotics

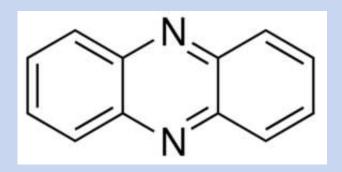
* Antibiotics: toxic substances produced by antagonists at low concentrations that poison or kill pathogens \rightarrow crucial role in biological control.

Ex: Pseudomonas fluorescens active against Gaeumonnomyces graminis by producing the antibiotic phenazine.

Antibiotics

Non-producing antibiotic mutant gives poor control \rightarrow more than 50% of the control is due to production of this antibiotic.

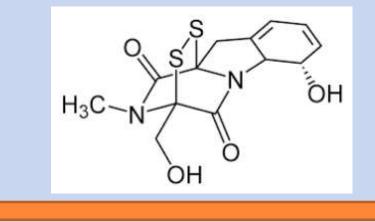
Antibiotics


- Different strains produce multiple antibiotics \rightarrow can suppress one or more pathogens.
- Ex: One strain of *Bacillus cereus* produces both <u>kanosamine</u> and zwittermycin.

Antibiotics

- Genetically engineered strains of $Pseudomonas\ putida$ to produce $phenazine \rightarrow improves\ capacities\ to\ suppress\ plant\ diseases\ in\ field-grown\ wheat.$






Disease Biological Control Antibiotics

Gliotoxin biocontrol.

production by $Trichoderma \rightarrow$ responsible for cytoplasmic leakage from Rhizoctonia solani cell membranes

Antibiotics

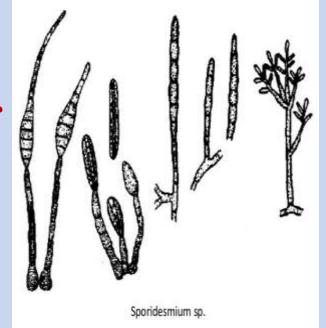
- Some pseudomonads produce 2,4-diacetylphloroglucinol and phenazine-1-carboxylic acid controlling wheat root

diseases.

N HO O

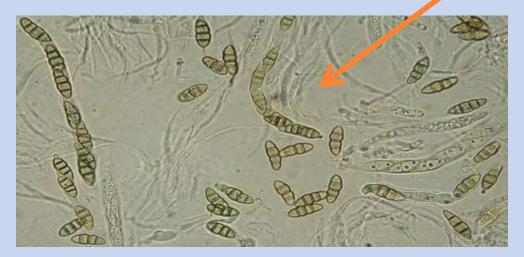
(7) Parasitisme

- Viability of spores and survival structures of pathogens may be reduced by direct <u>parasitism</u>. Since 1930's, it was noted that *Trichoderma* and *Gliocladium* can control plant pathogenic fungiby parasitism.



Parasitisme

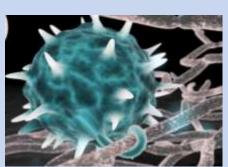
* Most important one: Sporidesmium sclerotivorum, obligate parasite of sclerotia of many fungal pathogens: Sclerotinia, Sclerotium,

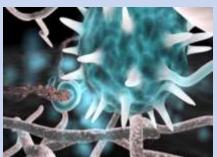

Botrytis,...

Sclerotia diffuse chemicals — stimulate germination of nearby conidia of the antagonist — infects pathogen sclerotia causing lysis.

Parasitisme

- This parasitisme (Sporidesmium sclerotivorum) \rightarrow can control lettuce disease caused by Sclerotinia minor.
- Another sclerotial parasite: Coniothyrium minitans.



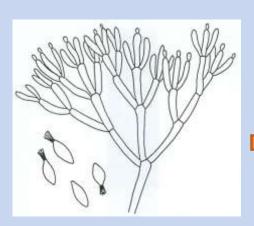

Parasitisme

* When antagonists are fungi infecting other pathogenic fungi — Mycoparasites. They may vary from necrotrophic to biotrophic species.

Parasitisme

* Some antagonistic fungi are even close relatives to pathogenic fungi: *Pythium oligandrum* the mycoparasite of *Pythium ultinum*, causal agent of seedling damping-off of sugar beet, cress and carrot.

Parasitisme

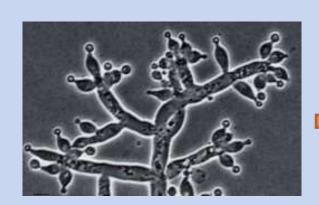

Parasitisme

- Mycoparasitisme is generally accompanied by release from antagonist of extracellular enzymes such as β -1,3 glucanases, chitinases, cellulases and proteases.
- Degradation products of the cell wall \rightarrow act as inducers of these enzymes in the host-parasite system.

<u>Disease Biological Control</u>

Parasitisme

* Myrothecium verrucaria, can parasitize hyphae of Cochliobolus sativus and reduce infection of barley by Drechslera teres (with seed treatment).


Parasitisme

Parasitisme

* Mycoparasites may also attack beneficial fungi such as those forming mycorrhizae. For example, *Trichoderma harzianum* \rightarrow *Glomus intraradices*.

Parasitisme

- (8) Suppressive Soils
- * In <u>suppressive soils</u>, soilborne pathogens develop much less and cause much milder diseases than in <u>conducive soils</u>.

Suppressive Soils

- * Examples of reduced activity pathogens in suppressive soils:
- Fusarium oxysporum (vascular wilts),
- Gaeumannomyces graminis (cereal take-all),
- Phytophthora cinnamomi (tree root rots),
- Pythium spp. (seedling damping-off).

Suppressive Soils

* The cause of pathogen suppression in the soil: the presence of antagonistic microorganisms — they act through production of antibiotics or lytic enzymes, competition for food, or direct parasitism of pathogens.

42

Suppressive Soils

- * Those antagonists may be fungi (Trichoderma, Penicillium, Sporidesmium) or bacteria (Pseudomonas, Burkholderia, Bacillus, Streptomyces).
- * Soil suppressiveness totally disappears when the soil is sterilized: Biological property.

43

(9) Practical Aspect

- Biological control method is still now limited, particularly in field conditions.
- Unlike in the laboratory, in the greenhouse and in the storage depot (or any other confined spaces), results in the field are not usually successful.

Practical Aspect

- The major problems:
- (1) introduced microorganisms generally fail to compete with the existing microflora or
- (2) soil amendments are not too selective to increase only the antagonist populations.

(10) Use/Soil pathogens

* Most common: Trichoderma harzianum and Gliocladium virens effective against:

Pythium, Phytophthora, Heterobasidion, Sclerotinia, Sclerotium, Fusarium.

Rhizoctonia,

Use/Soil pathogens

- Sporodesmium sclerotivorum and Coniothyrum minitans effective against:

Sclerotinia sclerotiorum.

- Talaromyces flavus antagonist to:

Verticillium species and Rhizoctonia solani.

Use/Soil pathogens

- Bacteria: Bacillus, Enterobacter, Pseudomonas, Burkholderia effective against:

Sclerotium cepivorum, Gaeumannomyces graminis, Phytophthora sp., Pythium sp.

- Nematode *Aphelenchus avenae*: antagonist to *Rhizoctonia* and *Fusarium*.

(11) Use/Aerial pathogens

- Many antagonists are proved to protect host plants from aerial pathogens (in research).
- The yeast *Pichia gulliermondii* effective against:

Botrytis and Penicillium.

Use/Aerial pathogens

- Botrytis cinerea suppressed by

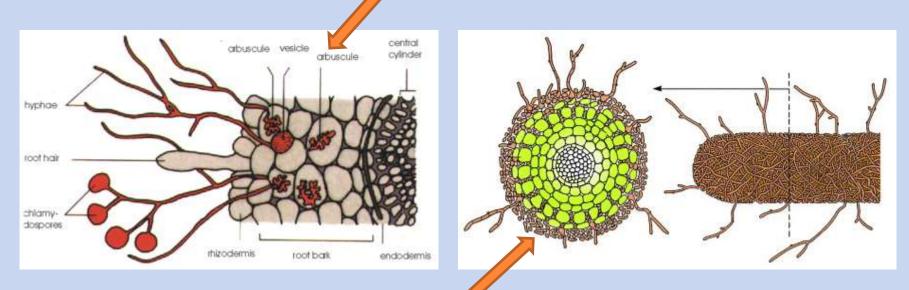
Penicillium sp. or Trichoderma sp.

- (12) Use/Postharvest pathogens
- Many yeasts, such as *Candida oleophila*, protect fruits against

Botrytis, Penicillium, and Rhizoctonia rots.

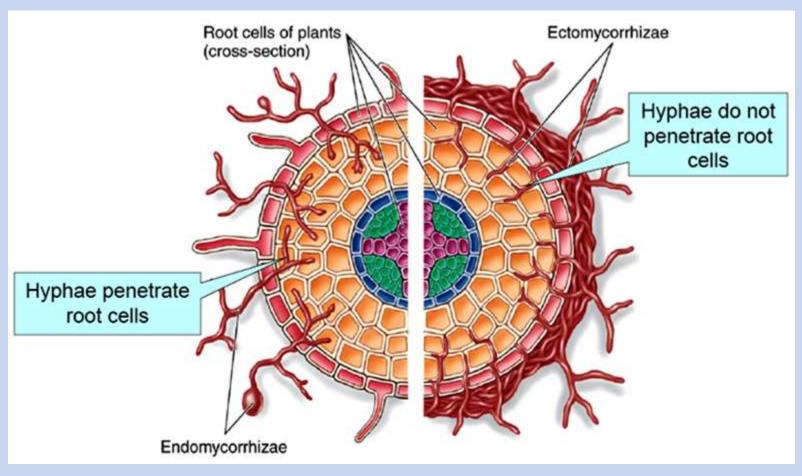
Use/Postharvest pathogens

- Green mold caused by *Penicillium digitatum* and *Botrytis* rot are controlled by


Trichoderma viride.

(13) Mycorrhiza Case

- Mycorrhizae form as result of mutualistic root symbiosis between certain fungi and many plants (roots).
- Mycorrhizal fungi can prevent root infections by reducing the pathogen access sites and by stimulating host defense.


Mycorrhiza Case

* Some are endomycorrhizal fungi.

* Others are ectomycorrhizal fungi.

Mycorrhiza Case

55

Mycorrhiza Case

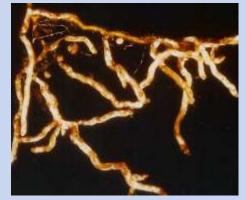
- Endomycorrhizal fungi can reduce the incidence of root-knot nematode, increase plant stress tolerance and block pathogen infections.

Mycorrhiza Case

- The damage due to *Pseudomonas* syringae on tomato is reduced when the plants are well colonized by these endomycorrhizae \rightarrow actions include physical protection and chemical interaction.

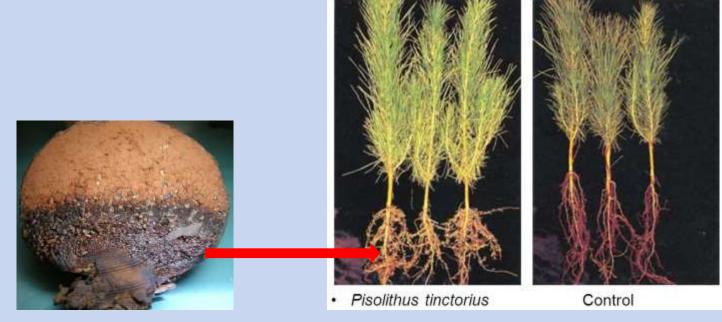
Mycorrhiza Case

- Endomycorrhizal fungi can act also indirectly to suppress plant pathogens \rightarrow enhancing nutrition to plants, increasing lignification of roots, changing chemical composition of plant tissues like antifungal chitinase, isoflavonoids,...


Mycorrhiza Case

- Ectomycorrhizal fungi proliferate outside the root surface and form a hyphal sheath around roots.
- Ectomycorrhizal fungi act by multiple mechanisms including antibiosis, fungistatic compounds, physical barrier,...

Mycorrhiza Case


- Ex: Paxillus involutus ectomycorrhiza controls root rot caused by Fusarium oxysporum and Fusarium moniliforme in red pine.

Mycorrhiza Case

- Pisolithus tinctorius, another ectomycorrhizal fungus, reduces sand pine disease caused by Phytophthora cinnamomi.

(14) Host Resistance Induction

- In addition to direct and indirect actions of antagonists (on pathogens), they can stimulate the host resistance.
- Hence, host inoculation with plant-growth-promoting rhizobacteria (PGPR) is effective in controlling many diseases: anthracnose (Colletotrichum lagenarium), angular leaf spot (Pseudomonas syringae pv. lachrymans), bacterial wilt (Erwinia tracheiphila).

Disease Biological Control Host Resistance Induction

- Resistance is induced by chemical elicitors produced by PGPR (salicylic acid, siderophores, lipopolysaccharides,...).
- PGPR act also by increasing plant growth, for example, by associative N_2 fixation, solubilizing nutrients such as P, promoting mycorrhizal function, regulating ethylene production in roots, releasing phytohormones, decreasing heavy metal toxicity.

Host Resistance Induction

- In addition to PGPR, other endophytic (and even epiphitic) bacteria can induce resistance in host plant.
- Advantage of the <u>endophytic bacteria</u> is to be relatively protected from the competitive organisms and the environmental stress.

(15) Biocontrol Agents Combination

- Improving the biological method in the rhizosphere may be to add mixtures of biocontrol agents, (exhibiting different or complementary modes).
- Ex: Application of a combination of three PGPR, Bacillus pumilus, Bacillus subtilis and Curtobacterium flaccumfaciens provided greater control of several pathogens on cucumber than when inoculated singly.

Biocontrol Agents Combination

- Ex.: Combination of fungi and bacteria: Trichoderma koningii + Pseudomonas chlororaphis or P. fluorescens provided greater suppression of take-all of wheat than T. koningii alone.
- Important: No member of the combination should be inhibitory to another.

Disease Biological Control (16) Selection of Antagonists

- Selection starts with <u>screening</u> of large number of microorganisms.
- Selected antagonists must be able to <u>colonize</u> the habitats, to <u>occupy</u> specific niches and to <u>interfere</u> with the growth and survival of the target pathogen.
- Hence, the <u>best place</u> to look for potential antagonists: is the specific environment in which they will be used.

Disease Biological Control (17) Production of Antagonists

- Ex: Against pathogens infecting plant roots: look for antagonists in the <u>rhizosphere</u>.
- Antagonists need to be <u>harvested</u>, <u>packaged</u>, and <u>delivered</u> in a viable form.
- Once applied, antagonists must grow and persist in the environment for sufficient time to exert effective control against pathogens.

Production of Antagonists

- Different antagonist formulations: freeze-drying cultures, mixture with inert carriers (clay, talk), encapsulation in alginate polymer,...
- Application methods: as liquid spray or drench, seed-dressing, powder, or pellets.

(18) Commercialized Antagonists

- * Fungi
- Trichoderma harzianum (F-Stop) for control of soilborne fungal pathogens,
- Gliocladium virens (GlioGard) for control of seedling diseases,
- Trichoderma harzianum/T. polysporum (BINAB T) for control of wood decays,
- Candida oleophila (Aspire) for control of postharvest decay in citrus and apples.

Commercialized Antagonists

- * Bacteria
- Pseudomonas fluorescens (Dagger G) for control of Rhizoctonia and Pythium damping-off of cotton,
- Bacillus subtilis (Kodiak) as a seed treatment.

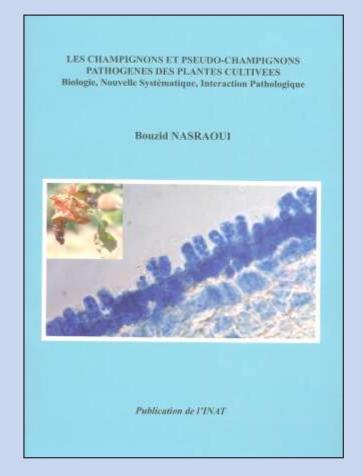
- (19) Natural Products Use
- * From soil:
- Copper sulfate (blue color): CuSO₄
- Sulfur (yellow color): S
 - * From living organisms:
- Essential oils from plants

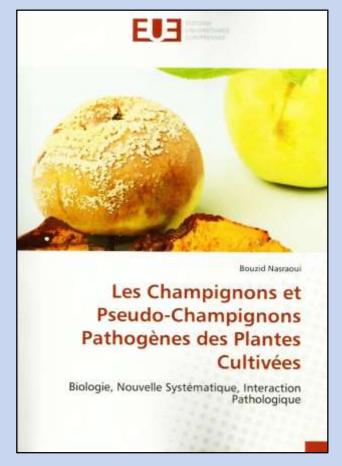
Bio-fungicides in Tunisia

* Biological fungicides (antagonists and substances) are encouraged:

Bio-fungicide License Fee = 50% of Chemical Fungicide License Fee

END


* Some presentations:


- The Reform of the Pesticide Registration Procedure in Tunisia (2009 - 2012) [2015]

- Main Cereal Rusts [2016]

- The Main Quarantine Bioaggressors Threatening Strategic Crops in Maghreb Countries [2017]

* My last book:

* Presentations and book are freely available on my personal website:

www.nasraouibouzid.tn nasraouibouzid2012@gmail.com

Tunisian Journal of Plant Protection

eISSN 2490 - 4368

pISSN 1737 - 5436

Monday 27 November 2017 17:02:16

Editorial Board

Evaluation Reviewers

Instructions to Authors

Evaluation Process

Paper Submission

Objective & Policy

Current Issue Current Editorial Recent Doctorates Previous Issues Home Page **Events**

The Tunisian Journal of Plant Protection (TJPP®) is an open access peerreviewed journal published in English twice a year and specialized in all plant health aspects, particularly IPM. It is hosted in the Tunisian Institution of the Agricultural Research and Higher Education (IRESA). It is managed by a multi-disciplinary and multi-institutional Tunisian Editorial Board.

Keywords: Plant abiotic stress, Plant pathology, Plant nematology, Plant entomology, Weeds, Pesticides, IPM

www.tjpp.tn

Thank you for your attention